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We investigate entanglement properties of a recently introduced class of macroscopic quantum superposi-
tions in two-mode mixed states. One of the tools we use in order to infer the entanglement in this non-Gaussian
class of states is the power to entangle a qubit system. Our study reveals features which are hidden in a
standard approach to entanglement investigation based on the uncertainty principle of the quadrature variables.
We briefly describe the experimental setup corresponding to our theoretical scenario and a suitable modifica-
tion of the protocol which makes our proposal realizable within the current experimental capabilities.
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I. INTRODUCTION

Entanglement is the key element in many applications of
quantum information processing �QIP� ranging from quan-
tum computation �1� to communication �2�. The studies of
entanglement represent an active line of research in modern
quantum physics which so far has found only partial an-
swers. On the practical side, entanglement is the core of a
new paradigm for quantum computation �3� and the catalyst
for the performance of tasks which are impossible within the
classical domain �4�.

More recently, the relation between entanglement and
thermodynamical properties of macroscopic objects has be-
come the center of an extensive study �5�. The existence of
long-range quantum correlations between the parties of a
complex many-body system is allegedly the reason for the
peculiar behavior of macroscopic properties of solids �6�. In
this context, it is intellectually stimulating and pragmatically
very important to investigate and understand the existence of
entanglement between macroscopic physical systems and the
influences of temperature on it �7�. Theoretically, some steps
in this direction have been performed with the study of ra-
diation pressure-induced entanglement between a movable
mirror and the electromagnetic field of a cavity �8–10�.

Very often, the quantitative analysis of even simplified
models of interaction faces important practical difficulties
related to the necessity of treating non-Gaussian states of
continuous-variable �CV� systems. For non-Gaussian states,
there is a lack of objective criteria to determine whether or
not entanglement is present. In these years, there have been a
few proposals designed to bypass this problem, including
Refs. �11,12�. Unfortunately, so far a totally satisfactory an-
swer has not been provided. This serious limitation largely
affects the extent to which an analysis of thermally entangled
systems can be conducted. A way to bypass the problem is
given by the formal restriction of the Hilbert space of the
composite CV system to an effective discrete one �13,14�,
where necessary and sufficient conditions for the existence of
bipartite entanglement can be used �15�. However, even
though this strategy is theoretically exploitable, its experi-
mental realization is extremely hard.

In this paper, we investigate the entanglement properties
of a class of states which have been very recently introduced

by Jeong and Ralph �16� in order to provide a reasonable
analogy of the macroscopic quantum superposition
�Schrödinger’s cat� paradox �17�. The entangled state in Ref.
�16� can be considered as a generalization of the two-mode
Schrödinger catlike state �18�, which corresponds to an en-
tangled state between microscopic and macroscopic systems,
to a thermal mixture. The macroscopic part of this catlike
state is represented by the displaced thermal state of a har-
monic oscillator while the microscopic part is an atomic �or
single photon� qubit. The other type of entangled state stud-
ied in Ref. �16� corresponds to an entangled state between
two macroscopic systems and can be generated through an
additional conditional measurement. Such a state can be un-
derstood as a generalization of an entangled coherent state
�19�, which has been found useful for QIP �20�, to a thermal
mixture. For the second type of the macroscopic entangled
state, it was found that Bell’s inequality can be violated up to
the maximum bound even though the thermal temperature
becomes extremely large �16�. On the other hand, the exis-
tence and degree of entanglement in the first type of
microscopic-macroscopic entangled state, which we shall
call “generalized catlike state,” remains a question to be an-
swered. In other words, the first question that should be an-
swered in this paper is “how much entanglement can be gen-
erated by an interaction between microscopic quantum state
�qubit� and macroscopic classical system �thermal state�
without any additional process when the temperature be-
comes large?”

Unfortunately, the states which we are interested in are
non-Gaussian mixed CV states for which the known en-
tanglement criterions for CV states �21� fail, leaving a degree
of ambiguity which prevents any firm statement on the pres-
ence of quantum correlations. To bypass this problem, we
describe an alternative theoretical method which is then cor-
roborated by testing the entangling power of the generalized
catlike state �22�. The test is based on the capability of a state
to induce entanglement, by means of only bilocal interac-
tions, between two initially uncorrelated qubits. As local uni-
tary operations alone cannot create entanglement, the entan-
gling power provides a sufficient condition for the
inseparability of the CV state being investigated and, quan-
titatively, a lower bound to the entanglement originally
present in the CV state. Therefore, another question that we
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naturally address in this paper is “how can we transfer the
entanglement generated by a microscopic-macroscopic inter-
action to the initially separable bipartite system of two non-
interacting qubits?”

Differently from the above mentioned effective-projection
technique �10,13�, our procedure is operative as it is imme-
diate to design the general scenario for an experimental in-
vestigation. This approach can be extended to other non-
trivial classes of non-Gaussian CV states, for example, the
states which can be generated from the generalized catlike
state by measuring the microscopic part of the superposition
and subsequently unitarily manipulating the remaining mac-
roscopic part. This results in the coherent superposition of
thermally averaged two-mode states. Again, the application
of the entangling power test shows the ability to induce en-
tanglement in a two-qubit system. Our analysis reinforces the
ideas related to the possibility of macroscopic entanglement
at nonzero temperature. We thus provide a tool in the non-
trivial problem of the quantitative analysis of the properties
of non-Gaussian states which is flexible enough to reveal
temperature-resilient macroscopic entanglement.

The remainder of this paper is organized as follows. In
Sec. II, we introduce a generalized catlike state, which is a
macroscopic nonlocal state. We first address the behavior of
the state’s variance matrix to show that the Simon’s CV-state
entanglement criterion fails in revealing any quantum corre-
lation in this state. On the other hand, by changing picture
and restricting the attention to bidimensional subsectors of
the infinite dimensional Hilbert space of the CV subsystem,
it is possible to infer the entanglement properties of this class
of generalized catlike states. This approach allows us to
highlight the striking effects of temperature and displace-
ment �in the phase space� over the entanglement of the state,
thus providing an important quantitative insight into its prop-
erties. In Sec. III, by adopting the entangling power view-
point, we show that entanglement can be reliably transferred
to two independent qubits which have interacted with the
state under investigation, giving us the possibility of con-
structing a highly entangled quantum channel of static qu-
bits. On the other hand, this approach provides us with a way
to detect entanglement in the CV state simply by looking at
the state of two qubits. Section IV describes exactly this
experimental protocol and a modified one which, with lim-
ited modifications to the original idea, turns out to be realis-
tic. Finally, in Sec. V we resume the central results of our
analysis and complement it with a brief study the entangle-
ment of thermally weighted entangled coherent states. We
show that the entangling power is an exploitable tool in this
case as well and reveals the presence of entanglement within
a significant range of temperature.

II. GENERALIZED CATLIKE STATES

Let us consider the interaction of a qubit of its logical
states ��0� , �1��m, initially prepared in the balanced linear su-
perposition �+ �m= �1	2���0�+ �1��m, with the macroscopic
part of the generalized catlike state here represented by a
physical system M in an initial displaced thermal state
�M

th�V ,d�=
d2�PM
th�V ,d� ���M��� �see Fig. 1�. We have intro-

duced the coherent state ��� of its amplitude �= �� �ei��C
and the thermal probability distribution

PM
th�V,d� =

2

��V − 1�
e−2�� − d�2/�V−1�, �1�

where V is the variance of the distribution, related to the
temperature of the thermal distribution by the relation V
= �e��+1� / �e��−1� with �−1=kBT ��=1 is assumed through-
out the paper�. Here, kB is the Boltzmann constant, T is the
radiation temperature, and � its frequency. We have indi-
cated with d the displacement of the state from the origin of
the phase space. The relation between the variance and the
mean photon number n̄ of the field is V=2n̄+1. The interac-
tion is ruled by the cross-phase modulation Hamiltonian

ĤK=	m̂†m̂M̂†M̂. Here m̂ and m̂† �M̂ and M̂†� are the annihi-
lation and creation operators of the microscopic �macro-
scopic� system, respectively, and 	 is the rate of nonlinearity
of the interaction �16�. After an interaction time t, the dy-

namical evolution corresponding to the Hamiltonian ĤK
gives rise to the state

�mM
ent =� d2�PM

th�V,d��
�mM�
� , �2�

with �
�mM = �1/	2���0,��+ �1,�ei���. Here, �=	t is the

cross-phase shift induced by the model ĤK.
In order to pursue our investigation, we find it convenient

to preliminarily consider just the pure superposition �
�mM,
whose entanglement properties we want to quantitatively ad-
dress. This state has been considered as a reasonable ex-
ample of Schrödinger cat state and has been experimentally
produced as an entangled state of internal and external de-
grees of freedom of a single trapped ion �18�. Clearly, for
�� ��ei��0, this state carries almost one ebit of entangle-
ment. However, the asymmetric non-Gaussian nature of this
superposition makes the entanglement analysis of this state
quite nontrivial. For instance, the entanglement does not

FIG. 1. �Color online� Scheme of principle of the protocol to
produce the generalized version of the catlike state �microscopic-
macroscopic entangled state� and the second class of thermally
weighted entangled coherent states �performed by the additional
conditioned step depicted in the dashed box�. The conditional-�
gate is the effective evolution induced by the cross-Kerr interaction
between the microscopic part m �in the pure state �
�m� and the
macroscopic one in the thermal displaced state �M

th . BS is a 50:50
beam splitter and the symbol for a detector is also shown.
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emerge at the level of the variance matrix. The variance ma-
trix of a two-mode CV state is defined as V�

= ��x̂� , x̂�� �� ,=1,2�. The variance matrix is in one-to-one
correspondence with the characteristic functions of a Gauss-
ian CV state which, in turns, gives us information about the
actual state of the system �23,24�. However, this is not true
for the non-Gaussian state �
�mM, whose variance matrix
reads

�mM
ent = � A C

CT B
�

with A=21,

B = 2���2�1 + cos � cos�2s� sin�2s�cos �

sin�2s�cos � 1 − cos � cos�2s�
� + 1 �3�

and

C = ���cos�s�cos�r� sin�s�cos�r�
cos�s�sin�r� sin�s�cos�r�

� . �4�

Here we have defined ��=2 �� �e−���2�1−cos ��, s=�+� /2 and
r= ���2 sin �+� /2. We have found that Simon’s separability
criterion �21,25� which is the most successful criterion for
CV entanglement, is not able to show quantum correlations
in this state. Interestingly enough, the criterion fails for �
=� which is the value at which one would expect the largest
degree of entanglement to be found between the subsystems.
We have also checked that the conditions for inseparability
established in Ref. �12� is not verified by the state we are
considering so that other ways have to be researched. The
above intuitive expectation about the entanglement at �=�
is confirmed by the following simple analysis. The state
�
�mM can be written in its Schmidt decomposition as

�
�mM = 	�−��+�m��+�M + 	�+��−�m��−�M , �5�

where ��±�m= �1/	2���0�±e2i���2 sin � �1��m and ��±�M

=N±����±e−i���2 sin � ��ei���M with the normalization factors

N± =
1

	2�1 ± exp�− ���2�1 − cos ����
. �6�

The coefficients of the superposition �5� are defined in terms
of the N± factors as �±=N±

2 / �N+
2 +N−

2�. In order to quantify
the entanglement within a state of its density matrix �ab, we
use the negativity of partial transposition �NPT� �26�. NPT is
a necessary and sufficient condition for entanglement of any
bipartite qubit state �26�. The corresponding entanglement
measure is defined as E=max�0,−2�−� with �− the negative
eigenvalue of the partial transposition of �ab with respect to
one of its parties. The entanglement in �
�mM can be ex-
pressed as

E
mM
= 	1 − e−2���2�1−cos ��. �7�

In the range �� �0,�� and regardless of ���, Eq. �7� is a
monotonously increasing function of the phase � saturating
at E
mM

��� � �1�=1. The saturation value of this function de-
pends on ��� and, as a function of the interaction phase �, is
reached faster as ��� is increased. The Schmidt decomposi-

tion of �
�mM is a useful tool in order to test in a simple way
the entanglement present in the thermally weighted superpo-
sition �mM

ent . By applying the NPT criterion, we find that
E�mM

ent =2
d2�PM
th�V ,d�	�−�+ which, involving the double

Gaussian integration of the square root of an exponential
function is, in general, hard to compute analytically. Never-
theless, it has been possible to numerically sample the be-
havior of this function against the interaction phase �, for
different values of the variance V and the displacement d.
The results are shown in Figs. 2�a� and 2�b�, where d=1 and
d=7 have been considered, respectively. Evidently, the ther-
mal weighting of the superposition does not smear out the
entanglement in the bimodal state. Significant entanglement
can be found for any value of the variance V �i.e., at any
value of the temperature considered�. By looking at Fig. 2�a�
we see that, as the variance V increases, more entanglement
is found in the state in Eq. �2�. This can be understood by
considering that a larger V signifies the inclusion of pure
component terms �
�mM�
� corresponding to larger values of
��� in the mixed state �2�. These pure component states with
larger ��� are associated with large degrees of entanglement.
Despite the increase of the thermal nature, the increase of the
contribution of the pure component states with larger en-

FIG. 2. Entanglement in the generalized catlike state �mM
ent

against the interaction phase �, for different values of the variance
V. In panel �a� we have considered the displacement d=1. From
bottom to top, the curves show the behavior of the entanglement as
V is increased. We have considered V=2 ���, V=5���, and V
= �10� ���. Panel �b� shows the results for d=7 showing that, for
larger d, the curves relative to different V’s get so close to become
indistinguishable. The saturation to one ebit of entanglement is
nearly independent of the temperature of the thermal distribution.
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tanglement results in the overall increase of the degree of
entanglement E�m,M

ent .
Moreover, as soon as a large displacement d is consid-

ered, the differences between the results corresponding to
distributions characterized by increasing variances becomes
irrelevant. The saturation value of entanglement is reached
regardless of the actual value of V �see Fig. 2�b��, quicker
than the case of a small d. This matches the results found in
terms of the negativity of the Wigner function associated
with the state �mM

ent which, for moderate values of V, deepens
its negative part for larger values of d.

On the other hand, this effect represents a huge practical
advantage in the production of the entangled state we are
studying. Indeed, it is well known that the currently achiev-
able rates of nonlinearity are not sufficiently large to guaran-
tee an interaction phase �=� �28�. This would signify that,
for a small V, the produceable entanglement would be very
faint �see Fig. 2�a��. However, it is sufficient to displace the
thermal field more in order to achieve a significant improve-
ment in the rate of entanglement generation. The reason be-
hind such a behavior relies on the increased distinguishabil-
ity of the components of a pure microscopic-macroscopic
superposition achieved for a dispacement d from the origin
of the phase space. Indeed, if a small � is available, one way
to increase the distinguishability between ��� and ��ei�� is
the use of the coherent states having larger amplitudes �29�.
This is exactly the mechanism behind the results shown in
Fig. 2�b�. This strategy is perfectly in line with the idea of
using weak nonlinearities for various applications �30,31�.
Thus, our scheme seems to be experimentally accessible
even in the more realistic situation of a small Kerr nonlin-
earity.

We believe that this result is important in the context of
entanglement in mesoscopic systems at finite temperatures
�10,32� as we have shown a model where the quantum nature
of a microscopic resource is enough in order to induce in-
trinsically quantum features in a macroscopic object �as our
displaced thermal field�. These features, which are tempera-
ture resilient, can be highlighted by partitioning the CV Hil-
bert space into quadruplets at fixed � and averaging over the
temperature-dependent probability distribution.

III. TRANSFER OF QUANTUM PROPERTIES
TO MICROSCOPIC OBJECTS

In this section we address a relevant question related to
the possibility of transferring the quantum correlations estab-
lished in the generalized catlike state �mM

ent to the initially
separable bipartite system of two noninteracting qubits. This
problem is worth addressing under many viewpoints. In pri-
mis, would the entanglement set in the generalized catlike
state be useful if a quantum channel has to be realized? In the
context of distributed QIP, this is a relevant question as it has
been shown that reliable channels, exhibiting genuine quan-
tum features, are an irremissible resource for the perfor-
mances of quantum computation �33�. On the other hand, the
interface between heterodimensional systems is per se a hot
topic which has attracted a considerable attention, recently,
especially focused onto the transfer of entanglement from a

CV system to one which lives in a discrete Hilbert space
�22,34�. Finally, while the tomographic reconstruction of the
properties of a CV system is a hard task to perform, its
discrete-variable counterpart may be accomplished with
much easier experimental protocols �35�. It would be thus
desirable to design a protocol which allows one to infer the
entanglement within a CV state without relying on its direct
tomography. In a discrete-variable system this is possible
through, for instance, entanglement witnesses detected with a
minimal number of measurements �36�.

Such a protocol is provided by the research for the en-
tanglement generated in a discrete-variable bipartite sub-
system by the CV one via some local qubit-CV interaction.
This gives a sufficient criterion for the entanglement between
the field modes �22�. Indeed, if the two CV modes are sepa-
rable, there is no way that, through simple local interactions,
quantum correlations could be established. This strategy has
been already proven to be efficient in revealing the entangle-
ment between two CV modes which have been fed into two
spatially separated cavities and interacted with a pair of qu-
bits. The question of there being any entanglement left be-
tween the cavity field modes after the interaction with the
qubits has found a positive quantitative answer through the
analysis of the entangling power. This is the strategy we
would like to use here.

Of course, the quantitative results will depend on the
model chosen for the local mode-qubit interaction. However,
the implementation of an arbitrary model for light-matter
interaction is not a trivial point. Specifically, it is a physical
setup-dependent issue �meaning that certain physical setups
enable the implementation of certain interaction models
more straightforwardly than others�. It is the physical system
that one has in mind which dictates the most suitable form of
the local interaction. Nevertheless, recently it has been
shown that the standard Jaynes-Cummings �JC� model for
resonant �as well as dispersive� qubit-boson interaction is
common to many different physical realizations of a quan-
tum device and in a range of frequency from microwave to
optical �27�. This dresses with physical significance the

choice of the interaction Ĥij =��âi�̂ j
++H.c.� ��i , j�= �m ,a�

for the first field mode-qubit system and �i , j�= �M ,b� for the
second� to govern the local dynamics of each qubit-field
mode subsystem. Here, �̂ j

+= �̂ j
−†= �1� j�0� is the raising opera-

tor of the jth qubit �ordered logical basis ��0� , �1��� and � is
a coupling strength. In the qubit computational basis, this
interaction is the generator of the propagator

Ûij��� = e−iĤijt =� cos��	â†â� − iâ†sin��	â†â + 1�
	â†â + 1

− iâ
sin��	â†â�

	â†â
cos��	â†â + 1� �

�8�

with �=�t being a rescaled interaction time.
It is convenient to proceed with the entangling power test

by previously considering the initial separable state

�
�mM � �00�ab and their joint dynamics Ûma,Mb= Ûma � ÛMb.
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Tracing out the CV degrees of freedom, we are left with the
two-qubit density matrix

�
��� = TrmM�Ûma,Mb�
�mM�
� � �00�ab�00�Ûma,Mb
−1 �

=e−���2�
n=0

� ���2n

n! �
A iG1 iG2 − G3

− iG1 B1 F1 iF2

− iG2 F1 B2 iH1

− G3 − iF2 − iH1 B3

� �9�

with the explicit expressions for the density matrix elements

A = �1 + c1
2����cn

2���, G1 =
1 + e−i�c1

2���
	n + 1

�*cn���sn��� ,

G2 = e−i�ns0���cn
2���, G3 =

e−i��n+1�s0���
	n + 1

�*sn���cn��� ,

B1 =
1 + cos2 �

n + 1
���2sn

2���, F1 =
e−i�ns0���
	n + 1

�cn���sn��� ,

B2 = s0
2���cn

2���, F2 =
e−i��n+1�s0���

n + 1
���2sn

2��� ,

B3 =
s0

2���
n + 1

���2sn
2���, H1 =

e−i�s0
2���

	n + 1
�*cn���sn��� . �10�

Here we have used the notation cn���=cos��	n�, sn���
=sin��	n+1�. Equations �10� have now to be integrated over
the thermal weighting function in order to gather the reduce
density matrix of the qubits after the interaction with �mM

ent .
By exchanging the summation in Eq. �9� and the Gaussian
integrals and using the binomial formula, evaluating the in-
tegral over Pth�V ,d� results in the introduction of the func-
tions

�n
j �V� = �

l=0

n+j �n + j

l
��V − 1

V + 1
�l

��l +
1

2
�,

�n
j �V,d� = �

l=0

2�n−l�+j �2�n − l� + j

r
�� 2d

V + 1
�2�n−l�−r+j

� �V − 1

V + 1
�r/21

2
�1 + �− 1�r��� r + 1

2
� �j = 0,1,2� ,

�11�

where �l
n� is the symbol for the binomial coefficient and ��r�

is the Gamma function of its argument r but in a density
matrix of the same form of Eq. �9�. The explicit eigenvalues
of the integrated density matrix are not very informative as
their form is quite complicated �37�. Nevertheless, it is pos-
sible to evaluate them numerically for a considerable range
of V’s and d’s. Some striking results are presented in Fig. 3
for V=10 �corresponding to an average photon number n̄
=4.5� and displacement d=7 ��� and d=10 ���. It is evident
that the same effect shown in Fig. 2�b�, regarding the in-

crease in d, is achieved in the amount of entanglement trans-
ferred to the initially separable qubits. It is particularly inter-
esting to stress the considerably large amount of transferred
entanglement. In this situation a significantly entangled two-
qubit channel can thus be constructed by exploiting the CV
entangler represented by �mM

ent . The usefulness of such a chan-
nel has to be quantified by including, in this analysis, the
mixedness properties of the two-qubit state. Indeed, it is
known that, for instance, a bipartite mixed state becomes
useless for quantum teleportation whenever its linearized en-
tropy Sl= �4/3��1−Tr �12

2 �r , t�� exceeds 2/3 �38�. Sl is a good
measure for mixedness which ranges from 0 �for pure states�
to 1 �for maximally mixed ones�. The calculation of the lin-
earized entropies corresponding to the examples reported in
Fig. 2 and their comparison to the threshold for quantum
teleportation is presented in Fig. 4, showing the high-
entanglement bumps which corresponds to a sufficiently pure
state. The channel, in this case, can be faithfully used for
quantum teleportation protocols.

Some remarks are due, in this context. The way the above
entangling power test has been constructed immediately
makes clear that a quantitative lower bound �even though not
a tight one� to the quantum correlations in the CV state is
represented by the amount of entanglement found between
the qubits. From this point of view, the correct theoretical
interpretation of the results shown in Figs. 3 and 5�a� is that
the entanglement between modes m and M is, at least, as

FIG. 3. �Color online� Entangling power of the state

d2PM

th�V ,d��
��� for V=10 and d=10 ��, blue line� and for V
=10 with d=7 ��, red line�. In both the simulation, �=� has been
assumed. The horizontal axis shows the rescaled interaction time
�=�t.

FIG. 4. �Color online� Mixedness of the state 
d2PM
th�V ,d��
���

against the rescaled interaction time � for the same parameters as
Fig. 3. Also shown the mixedness threshold for a two-qubit state for
quantum teleportation �thick straight line�.
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large as the largest peak shown there. Obviously, this does
not allow us to attach a special meaning of good entangle-
ment measure to this peak value �analogous considerations
may be done regarding the zones where the transferred en-
tanglement is zero which cannot be straightforwardly inter-
preted as regions where the two modes are separable�. On the
other hand, regarding the behavior of the mixedness func-
tion, the regions associated to a higher purity of the two-
qubit state can be put in correspondence with the optimal
transfer of information �quantum correlations� occurred from
the two-mode CV state to the qubit one. The entangling
power, indeed, is based on a process of entanglement transfer
between the two subsystems which occurs at the expense of
the intrasubsystem correlations. As time goes by, the quan-
tum nature of the photon number gives rise to a discrete
distribution of Rabi frequencies which, in turn, is responsible
for the effect of collapses and revivals of entanglement be-
tween the qubits �39�. When the entanglement is transferred
maximally to the qubits, the entanglement between the qubits
and the CV modes is minimized �22�. Thus, at that particular
interaction time, the state of the qubits is nearly entirely
separable from the state of the CV subsystem. If we start
from a pure state for the total system, we know that two
subsystems become pure as they are not entangled. However,
in our case, the initial state for the total system is mixed. It is
therefore interesting to note that even with the mixed prop-
erty of the initial field, the qubit state becomes quite pure at
the time when the qubits and the CV are less entangled. The
periodicity of the Rabi floppings, then, reverses the process
at later time, thus increasing the mixedness.

It is worth stressing the nonmonotonic behavior of the
entangling power against the entanglement initially present
in the CV state. This is a well-known feature of this en-
tanglement test �22� and is a result of the interference of the
Rabi flopping induced by the distribution of photons charac-
terizing each state having a specific value of V and d. As a
specific instance of this peculiar nonlinear relation between
the amount of entanglement initially contained in the CV
entangler and what is finally found in the two-qubit reduced
state, we consider the case of V=100 with d=20. The analy-
sis conducted in Sec. II results in an entanglement which
rapidly approaches 1, as shown in the inset of Fig. 5�a�, a
behavior quite consistent with the trend shown in Fig. 2�b�.
On the other hand, the entanglement transferred to the two-
qubit state is never larger that 0.45, as evidenced by Fig.
5�a�, which is smaller than the entanglement transferred to
the qubits for V=10, d=7. We believe this result is still ex-
tremely significant as the high value of V considered here
�corresponding to n̄=49.5 photons� shows that quite a con-
siderable entangling power is in a high-temperature general-
ized catlike state. Coming back to the example of teleporta-
tion we have addressed, the corresponding two-qubit channel
is still useful as its mixedness, at �=8, can be well below the
threshold �see Fig. 5�b��.

IV. PROPOSAL FOR THE EXPERIMENTAL
VERIFICATION

In the previous section we have theoretically addressed
the question of how to infer the entanglement between the
subsystems of a generalized catlike state. On a practical side,
however, if our attention is restricted to the case of traveling-
wave fields, some problems have to be faced.

In the first place, we have already stressed the difficulties
related to the achievement of large-enough rates of nonlin-
earity. In Sec. II we have outlined a strategy to highlight the
quantum correlations in generalized catlike states generated
with smaller interaction phases �’s. Nevertheless, the realiza-
tion of even small �’s would pass, for instance, through the
use of long optical fibers where the effect of dephasing chan-
nel is still an unknown issue �31�.

In the second place, the realization of the entangling
power test would require a demanding �even if foreseeable�
experimental setup. In Fig. 6 we sketch the scheme of the
idea put forward in Sec. III. The generalized catlike state
being embodied by two traveling field modes following the
general scheme of Fig. 1, would feed two optical cavities,
each crossed by a two-level atom �or containing an inte-
grated quantum dot, as an alternative�. The passage of the
atoms would set each cavity field mode in resonance with the
external driving mode, which will penetrate the cavity and
interact with the two-level system through the dynamics de-
scribed in Eq. �8�. Each step required by this experimental
setup has been independently demonstrated �see Ref. �22�,
and references within, for a detailed discussion� and we will
not comment further on them. On the other hand, the main
point of this section is the introduction of a simplified
scheme which is still able to highlight the important features
of our study with a much more realistic physical setup.

FIG. 5. �Color online� �a� Entangling power of the state

d2PM

th�V ,d��
��� for V=100 and d=20. The inset shows the en-
tanglement, against �, in the corresponding �mM

ent . �b� Mixedness of
the same state as a function of the rescaled interaction time. The
mixedness threshold for teleportation is also shown �straight line�.
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The idea is depicted in Fig. 7 where the most striking
difference with respect to the previous configuration is the
presence of a single cavity and no traveling light field. In-
deed, it is well known �40� �see also Paternostro et al. �20��
that the dispersive interaction between a single two-level
system and a cavity mode would lead to an effective Hamil-
tonian reading

ĤmM
eff = 	M̂†M̂�1a�1� , �12�

where the microscopic subsystem m has been identified with
the qubit a whose spectrum has been rescaled so that its
ground state has zero energy. We have indicated 	=�2 /�
with ��� the large atom-field detuning. This model can be
achieved by assuming a qubit one-cavity mode JC interac-
tion in the presence of a static electric field. The induced
Stark shift on the atomic levels creates a detuning � such that
Eq. �12� holds. The propagator generated by this Hamil-
tonian, starting from the state �+ �a � �M

th�V ,d�= �1/	2���0�
+ �1��a � �M

th�V ,d�, creates a generalized catlike state between
a thermal displaced state of the cavity field mode and a two-
level atom. The displacement of the thermal field can be
effectively performed via the modification to the cavity re-
fractive index induced by the presence of the two-level atom.
This acts as an effective nonlinear intracavity medium which
shifts the resonance frequency of the cavity and can inject an
external coherent state of its amplitude �. The effective dis-
placement would result in d=��t with �t the time-of-flight
for atom a crossing the cavity �41�.

We are thus considering a hybrid catlike state where the
CV and the qubit parts have clearly distinguished physical
embodiments. As soon as qubit a leaves the cavity, a second
qubit b, identical to the first, crosses the cavity in absence of
the Stark electric field �i.e., the interaction model is the stan-
dard JC one�. By interacting with the cavity field, this pro-
cess leads to an entangled state of subsystems a, M, and b.
Tracing out the cavity field, we are left with a reduced two-
qubit state whose entanglement represents, again, a sufficient
condition for the entanglement in the generalized catlike
state. We are thus describing a unilateral entanglement-
transfer process for a modified entangling power test �42�.

Obviously, the quantitative analysis reported in Sec. III
are not applicable to the present modified protocol and the
effectiveness of the entanglement transfer process should be
retested. However, this is a straightforward process which
may be derived directly from what is presented in Eqs. �9�
and �10�. We find that the structure of the reduced density

matrix �
,ab=TrM�ÛMbÛmM
eff �M

th
� �+ �a�+� � �g�b�g � ÛmM

eff†ÛMb
† �

is similar to Eq. �9�. The calculation of the negativity of
partial transposition gives us, once again, useful information
about the entanglement within this two-qubit state, trans-
ferred after the M-b interaction. The results are shown in Fig.
8�a� for the same parameters as in Fig. 3. At the same time,
in Fig. 8�b� we reprise our teleportation example and present
the analysis in terms of linearized entropy. It is evident that a
good degree of entanglement can still be found �despite the
high peaks of Fig. 3 have disappeared�, with a quite low
degree of mixedness of the associated quantum channel also
for this modified entangling test protocol. Obviously, this
represents a huge advantage in terms of experimental feasi-
bility as all the ingredients for the entangling power test are

FIG. 6. Scheme of principle of the experimental to be realized in
order to test the entangling power as described in Sec. III. Modes m
and M are assumed to be addressing two cavities through which
two independent qubits pass. The cavity-qubit interaction changes
the refraction index of the cavity, allowing for the feeding by the
external fields.

FIG. 7. Scheme for the experimental verification of the analysis
presented in this paper. The scheme reproduces the single-qubit
transfer protocol we address in the body of the paper. In this case,
the generalized catlike state is given by the state of qubit a and the
cavity mode field. Qubit b is ancillary and is used just in order to
test the entangling power in a less demanding way.

FIG. 8. �Color online� �a� Entangling power of the state

d2PM

th�V ,d��
��� against � for V=10 and d=10 ��� and V=10
with d=7���. �b� Mixedness of the same state as a function of the
rescaled interaction time. The mixedness threshold for teleportation
is also shown �straight line�.
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within the current state of the art. Considerations analogous
to those made about the symmetric entangling power test in
Sec. III can be adapted to the case here at hand. From an
experimental point of view, resolving the oscillations of the
entanglement function against time could be challenging.
The zones of large entanglement and purity �i.e., small mix-
edness� correspond to a maximum transfer of quantum cor-
relations from the entangler to the receivers and a partial
disentanglement of these two subsystems. Therefore, the
time-averaged entanglement could gain some practical rel-
evance in estimating, roughly, the entanglement content of
the two-qubit state after the asymmetric entanglement trans-
fer process. For the curves plotted in Fig. 8, such a quantity
can be as large as 0.25, in the significant range of interaction
times which includes the region of faster oscillations.

V. REMARKS

In investigating the entangled properties of mesoscopic
systems at finite temperature, in the quantum optics domain,
we often face some difficulties related to a certain lack of
analytical tools. This has strongly limited the insight we
could gain about the specific behavior, in terms of quantum
correlations, of particular classes of states �especially non-
Gaussian states�.

These difficulties have forced the researchers to look for
ways to bypass the problem and infer the quantumness of a
state. It appears that such the alternative tests are based on
the restriction of the analysis from infinite to finite dimen-
sional Hilbert spaces. This can be done by effective �formal�
projection of a CV state onto bipartite Hilbert sectors �as
done in Refs. �10,13�� as well as looking at the amount of
nonclassical correlations that a given state under investiga-
tion can transfer to mutually noninteracting qubits �22�. In
this paper we have performed some interesting steps along
these directions, investigating the entanglement properties of
a class of recently introduced �highly non-Gaussian� gener-
alized catlike states �16�. Our approach has been twofold. In
the first place, we have calculated the entanglement of the
catlike state by partitioning the Hilbert space of the com-
bined system into manifolds spanned by the states of an ef-
fective bipartite two-level system. The entanglement of the
whole state, then, is the result of a thermal average of the
quantum correlations within each manifold. The qualitative
features highlighted by this approach have been confirmed,
in the second place, by testing the entangling power of the
generalized catlike state with respect to two initially sepa-
rable qubits. This second approach is particularly useful un-
der a practical as well as a theoretical viewpoint. It has re-
vealed that powerful experimental criteria exist, for the
entanglement investigation, beyond the CV criteria for in-
separability �21�. Our study is, thus, a particularly illuminat-
ing case of this second, more operative scenario.

As an additional example of the effectiveness of the en-
tangling power test, here we briefly assess the problem of the
entanglement in the class of states generated by the entire
protocol described by the setup in Fig. 1 �dashed-box in-
cluded�. The detection of mode m is performed onto the basis
��+ � , �−�� �with �−�= �1/	2���0�− �1���. Conditioned on find-
ing �± �m, the action of the beam splitter which mixes mode
M to vacuum gives rise to the state �we assume �=��

�± = N±� d2�Pth�V,d����,− ����,− �� + ��,− ���− �,��

± �− �,����,− �� ± �− �,���− �,��� , �13�

where �=� /	2 and N± are proper normalization factors. In
order to fix the ideas, let us focus on the case of �+ �m being
found with d=0, for which the expression of the variance
matrix is particularly straightforward, reading

�+ =�
V2 + 1

2V
0 −

�V − 1�2

2V
0

0
V2 + 1

2V
0 −

�V − 1�2

2V

−
�V − 1�2

2V
0

V2 + 1

2V
0

0 −
�V − 1�2

2V
0

V2 + 1

2V

� .

�14�

It is easy to check that Simon’s separability condition is not
violated by Eq. �13� so that no firm statement about the en-
tanglement properties of this state can be made. However,
following the lines depicted in Ref. �16�, it is straightforward
to show that Eq. �13� violates a Bell-CHSH inequality �43�
regardless of V and d, thus revealing an inherent quantum
entanglement of the state. This result is confirmed by the
application of the entangling power test which shows that
entanglement �as large as 0.6 for V around 50 and d=5�
can be transferred to two mutually noninteracting qubits us-
ing the symmetric scheme of Sec. III. This second example
completes and complements our investigation which, we be-
lieve, represents an interesting example of the possibilities of
revealing quantum nonlocality in nontrivial situations of me-
soscopic superpositions at high temperature.
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